Refresh Trigonometric identities

MST224 expects you to be familiar with a number of trigonometric identities (MST224 HB p. 14) and they are listed here – the associated problem sheets will give you some practice in using some of these expressions without a calculator.

Pythagoras’s theorem states that for any right-angled triangle, if \(c \) is the length of the hypotenuse (the side opposite the right angle) and \(a \) and \(b \) are the lengths of the other two sides, then
\[
c^2 = a^2 + b^2.
\]

This leads to the following trigonometric identities:
\[
\sin^2 \theta + \cos^2 \theta = 1,
\]
\[
\tan^2 \theta + 1 = \sec^2 \theta,
\]
\[
1 + \cot^2 \theta = \cosec^2 \theta.
\]

Addition formulas
\[
\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta,
\]
\[
\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta,
\]
\[
\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta,
\]
\[
\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta,
\]
\[
\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta},
\]
\[
\tan(\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta}.
\]
\[
\sin \alpha \cos \beta = \frac{1}{2} \sin(\alpha + \beta) + \frac{1}{2} \sin(\alpha - \beta),
\]
\[
\cos \alpha \sin \beta = \frac{1}{2} \sin(\alpha + \beta) - \frac{1}{2} \sin(\alpha - \beta),
\]
\[
\cos \alpha \cos \beta = \frac{1}{2} \cos(\alpha + \beta) + \frac{1}{2} \cos(\alpha - \beta),
\]
\[
\sin \alpha \sin \beta = \frac{1}{2} \cos(\alpha - \beta) - \frac{1}{2} \cos(\alpha + \beta).
\]

In particular, these formulas give
\[
\sin(\alpha + 2\pi) = \sin \alpha, \quad \cos(\alpha + 2\pi) = \cos \alpha, \quad \tan(\alpha + \pi) = \tan \alpha;
\]
\[
\sin(-\alpha) = -\sin \alpha, \quad \cos(-\alpha) = \cos \alpha, \quad \tan(-\alpha) = -\tan \alpha.
\]

Double-angle formulas
\[
\sin 2\alpha = 2 \sin \alpha \cos \alpha,
\]
\[
\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha = 1 - 2 \sin^2 \alpha = 2 \cos^2 \alpha - 1,
\]
\[
\tan 2\alpha = \frac{2 \tan \alpha}{1 - \tan^2 \alpha},
\]
\[
\sin^2 \alpha = \frac{1}{2}(1 - \cos 2\alpha),
\]
\[
\cos^2 \alpha = \frac{1}{2}(1 + \cos 2\alpha).
\]

Cosines of related angles
\[
\cos(\frac{\pi}{2} - \alpha) = \sin \alpha, \quad \cos(\frac{\pi}{2} + \alpha) = -\sin \alpha,
\]
\[
\cos(\pi - \alpha) = -\cos \alpha, \quad \cos(\pi + \alpha) = -\cos \alpha.
\]