Refresh Definite integrals

Before you learn more about why signed areas are important, it’s useful for you to learn some terminology and notation that are used when working with them.

If f is a continuous function and a and b are numbers in its domain, then the signed area between the graph of f and the x-axis from $x = a$ to $x = b$ is called the **definite integral** of f from a to b, and is denoted by

\[\int_a^b f(x) \, dx. \]

This notation is read as ‘the integral from a to b of f of x, $d\,x$’. The numbers a and b are called the **lower** and **upper limits of integration**, respectively.

For example, for the function f in Figure 1,

\[\int_3^7 f(x) \, dx = -9, \quad \int_7^9 f(x) \, dx = 2, \]
and \[\int_3^9 f(x) \, dx = -9 + 2 = -7. \]

Similarly, for the same function,

\[\int_4^4 f(x) \, dx = 0, \quad \text{and} \quad \int_7^3 f(x) \, dx = -(9) = 9. \]

![Figure 1](image_url)

The graph of a function, and some areas

You’ll see a little later in this subsection where this notation for a definite integral comes from.

The symbol \int is called the **integral sign**. It sometimes appears in a smaller form, \int, when it’s in a line of typed text.

As with Leibniz notation for derivatives, the ‘d’ in the notation for definite integrals has no independent meaning. In many texts, including this one, it’s printed in upright type, rather than italic type, to emphasise that it’s not a variable. You don’t need to do anything special when you handwrite it.
When you use the notation $\int_{a}^{b} f(x) \, dx$, remember that you must include not only the \int_{a}^{b} at the beginning, but also the dx at the end. Try not to forget the dx!

The box below lists some standard properties of definite integrals, which come from their definition as signed areas. These properties hold for all values of a, b and c in the domain of the continuous function f. The second property comes from the extended definition of signed area, to cases where b is less than a. The third property expresses the fact that the signed area from a to c is equal to the signed area from a to b plus the signed area from b to c. Figure 2 illustrates this property in a case where $a < b < c$, but the extended definition of signed area ensures that the property holds even when a, b and c aren’t in this order. This is one reason why the definition of signed area is extended in the way that you’ve seen.

Standard properties of definite integrals

\[
\int_{a}^{a} f(x) \, dx = 0
\]
\[
\int_{b}^{a} f(x) \, dx = - \int_{a}^{b} f(x) \, dx
\]
\[
\int_{c}^{a} f(x) \, dx = \int_{a}^{b} f(x) \, dx + \int_{b}^{c} f(x) \, dx
\]

Figure 2 Two adjacent signed areas

Activity 1 Understanding definite integrals

Consider the function f whose graph is shown below. The areas of some regions are marked. By using these areas, write down the values of the following definite integrals.

Hint: notice that in some of these definite integrals the upper limit of integration is less than the lower limit of integration.

(a) $\int_{-5}^{-3} f(x) \, dx$ (b) $\int_{-5}^{2} f(x) \, dx$ (c) $\int_{2}^{7} f(x) \, dx$

(d) $\int_{-5}^{2} f(x) \, dx$ (e) $\int_{-3}^{7} f(x) \, dx$ (f) $\int_{-5}^{7} f(x) \, dx$

(g) $\int_{5}^{7} f(x) \, dx$ (h) $\int_{2}^{-3} f(x) \, dx$ (i) $\int_{7}^{2} f(x) \, dx$

(j) $\int_{-3}^{-5} f(x) \, dx$ (k) $\int_{7}^{-3} f(x) \, dx$ (l) $\int_{7}^{-5} f(x) \, dx$
Solution

(a) \(\int_{-5}^{-3} f(x) \, dx = -5 \).

(b) \(\int_{-3}^{2} f(x) \, dx = 6 \).

(c) \(\int_{2}^{7} f(x) \, dx = -11 \).

(d) \(\int_{-5}^{2} f(x) \, dx = -5 + 6 = 1 \).

(e) \(\int_{-3}^{7} f(x) \, dx = 6 - 11 = -5 \).

(f) \(\int_{-5}^{7} f(x) \, dx = -5 + 6 - 11 = -10 \).

(g) \(\int_{5}^{5} f(x) \, dx = 0 \).

(h) \(\int_{2}^{-3} f(x) \, dx = - \int_{-3}^{2} f(x) \, dx = -6 \).

(i) \(\int_{2}^{7} f(x) \, dx = - \int_{7}^{2} f(x) \, dx = -(-11) = 11 \).

(j) \(\int_{-3}^{-5} f(x) \, dx = - \int_{-5}^{-3} f(x) \, dx = -(-5) = 5 \).

(k) \(\int_{7}^{3} f(x) \, dx = - \int_{3}^{7} f(x) \, dx \)
 \[= -(-5) = 5, \]
 by part (e).

(l) \(\int_{7}^{5} f(x) \, dx = - \int_{5}^{7} f(x) \, dx \)
 \[= -(-10) = 10, \]
 by part (f).
Activity 2 Using a standard property of definite integrals

Consider again the graph in Activity 1.

Given that \(\int_2^9 f(x) \, dx = -15 \), find \(\int_7^9 f(x) \, dx \).

Solution

\[
\int_2^9 f(x) \, dx = \int_2^7 f(x) \, dx + \int_7^9 f(x) \, dx
\]

so

\[
-15 = -11 + \int_7^9 f(x) \, dx
\]

and hence

\[
\int_7^9 f(x) \, dx = -15 - (-11) = -4.
\]

As you’d expect, you can replace the expression \(f(x) \) in the notation for a definite integral by the formula for a particular function. For example, the signed areas in Figure 3 are denoted by

\[
\int_{-1}^1 x^2 \, dx \quad \text{and} \quad \int_0^1 (x^3 - 1) \, dx,
\]

respectively.

Figure 3 Signed areas between the graphs of particular functions and the \(x \)-axis

As always with algebraic notation, the notation for a definite integral can be used with letters other than the standard ones. For example, if \(g \) is a continuous function whose domain contains the numbers \(p \) and \(q \), and you use \(t \) to denote the input variable of \(g \), then the definite integral of \(g \) from \(t = p \) to \(t = q \) is denoted by

\[
\int_p^q g(t) \, dt.
\]

In fact, the input variable of the function in a definite integral is what’s known as a **dummy variable** – you can change its name to any other variable name that you like, without affecting the value of the definite integral. For example, if \(f \) is a continuous function whose domain contains the numbers \(a \) and \(b \), then

\[
\int_a^b f(x) \, dx = \int_a^b f(t) \, dt = \int_a^b f(u) \, du,
\]
and so on. As a particular example,
\[\int_{-1}^{1} x^2 \, dx = \int_{-1}^{1} t^2 \, dt = \int_{-1}^{1} u^2 \, du, \]
since all these definite integrals denote the signed area shown in Figure 3(a).

If \(f \) is any continuous function, and \(a \) and \(b \) are numbers in its domain, then you can find an approximate value for the definite integral \(\int_{a}^{b} f(x) \, dx \), as accurately as you like, by using the method that you met in the last subsection. Here’s the method expressed algebraically.

Suppose that you want to find \(\int_{a}^{b} f(x) \, dx \), as illustrated in Figure 4(a). You divide the interval between \(a \) and \(b \) into \(n \) subintervals, each of width \((b - a)/n \), as illustrated in Figure 4(b). We’ll denote \((b - a)/n \) by \(w \) here, for conciseness.

Figure 4
(a) A definite integral \(\int_{a}^{b} f(x) \, dx \)
(b) A collection of \(n \) rectangles whose total signed area is approximately this definite integral

Algebraic definition of a definite integral

Suppose that \(f \) is a continuous function and \(a \) and \(b \) are numbers in its domain. Then the **definite integral** of \(f \) from \(x = a \) to \(x = b \) is given by the equation
\[
\int_{a}^{b} f(x) \, dx = \lim_{n \to \infty} \left(f(a + 0w) + f(a + 1w) + f(a + 2w) + \cdots + f(a + (n-1)w) \right) w
\]
where \(w = (b - a)/n \).

Figure 5
(a) The subinterval method applied to a function \(f \) from \(x = a \) to \(x = b \)
(b) One of the subintervals and its corresponding rectangle
With this notation, the signed area of the rectangle corresponding to the subinterval, from x to $x + \delta x$, is

$$f(x) \, \delta x.$$ \hspace{1cm} (1)

So the total signed area of all the rectangles is the sum of a number of terms, each of form (1). As the number of subintervals gets larger and larger, the size of δx gets smaller and smaller, and the total signed area of the rectangles gets closer and closer to the definite integral of f from a to b. So, loosely, you can think of this definite integral as the sum of infinitely many terms of form (1), where the quantity δx is infinitely small. Historically, the quantity δx was denoted by dx when it becomes infinitely small, so the sum described above was denoted by

$$\int_a^b f(x) \, dx,$$

where the symbol \int is an elongated ‘S’, which stands for ‘sum’.

To see where the term ‘integral’ comes from, remember that the verb ‘to integrate’ means ‘to join together’. Loosely, you can think of a definite integral as being obtained by joining together infinitely many signed areas, each infinitely narrow, into a single signed area.

Definite integrals

Suppose that f is a continuous function, and a and b are numbers in its domain. The signed area between the graph of f and the x-axis from $x = a$ to $x = b$ is called the **definite integral** of f from a to b, and is denoted by

$$\int_a^b f(x) \, dx.$$