Refresh Exponential functions

If a is a *positive* real number and n is a positive integer, then a^n represents a multiplied by itself n times. A meaning can also be assigned in a natural way to a^x, where x is any real number. When x is not a positive integer, this is achieved as follows.

(i) $a^0 = 1$.

(ii) If n is a positive integer, then $a^{-n} = 1/a^n$.

(iii) If p, q are integers, with $q > 0$, then $a^{p/q} = (\sqrt[q]{a})^p$.

(iv) If x is an irrational number, then the value of a^x can be found to any desired accuracy by approximating x more and more closely by rational numbers p/q, for which $a^{p/q}$ is defined by (iii) above.

With these definitions, we have the following rules for powers, where x and y are any real numbers:

$$a^{x+y} = a^x a^y \quad \text{and} \quad (a^x)^y = a^{xy}.$$

For each positive real number a, the process just described for finding values of a^x for any real number x is a rule for the function

$$f(x) = a^x,$$

with domain \mathbb{R}. Each such function is called an **exponential function**, and the number a is called the **base** of the function.