Refresh Area of a general triangle

It is known that the area of a triangle can be found using the formula
\[A = \frac{1}{2}bh, \]
where \(b \) is the length of the base of the triangle and \(h \) is its height. However, the information known about a triangle does not always include its height. An alternative method of finding the area of a triangle can be used if two sides and the angle between them are known.

Suppose that in triangle \(XYZ \) in Figure 1 the lengths \(x \) and \(y \) and the angle \(Z \) are known.

![Figure 1](image)

Taking \(YZ \) as the base, draw a line from \(X \) meeting \(YZ \) in a right angle at \(H \). The length of this line, \(h \), is the height of the triangle. From triangle \(XZH \), we have \(\sin Z = h/y \) so that \(h = y \sin Z \).

Substituting this in \(A = \frac{1}{2}bh \) gives \(A = \frac{1}{2}xy \sin Z \).

The area of triangle \(XYZ \) is given by \(A = \frac{1}{2}xy \sin Z \).

Note that the angle \(Z \) must be the one between the sides of length \(x \) and \(y \).

Example 1

Find the area of triangle \(PQR \) in Figure 2 correct to one decimal place.

![Figure 2](image)

Solution

Since \(Q \) is the known angle, the area of the triangle is
\[
\frac{1}{2} \times PQ \times QR \times \sin Q = \frac{1}{2} \times 7.2 \times 6.3 \times \sin 40^\circ \\
= 14.6 \text{ cm}^2 \text{ (to 1 d.p.)}.
\]