Practice Integration – set 1

Exercise 1.1

Differentiate the following functions

(a) \(F(x) = 2x^3 - x \) (b) \(F(x) = 2x^3 - x + \pi \)

(c) \(F(x) = 2x^3 - x + e^2 \)

Exercise 1.2

(a) Show that \(F(x) = x^2 + \frac{1}{2}e^{2x} \) is an antiderivative for \(f(x) = 2x + e^{2x} \).

(b) What is the indefinite integral of \(f(x) = 2x + \frac{1}{2}e^{2x} \)?

(c) Write down an antiderivative for \(f(x) = 2x + \frac{1}{2}e^{2x} \) other than the one found in part (a).

Exercise 1.3

Find the indefinite integrals of the following functions. All the functions are defined on a domain that only includes positive values.

(a) \(f(x) = x^{-7} \) (b) \(g(s) = \sqrt{s} \) (c) \(h(v) = \frac{1}{\sqrt{v}} \)

(d) \(i(\omega) = \sqrt[3]{\omega} \) (e) \(j(\delta) = \frac{1}{\sqrt[3]{\delta}} \) (f) \(k(z) = z^{-3/5} \)

Exercise 1.4

Find the indefinite integrals of the following functions. All the functions are defined on a domain that only includes positive values.

(a) \(f(x) = x^3 - 3x^2 \) (b) \(g(s) = \sqrt{s} + \frac{2}{\sqrt{s}} \) (c) \(h(y) = y \left(\frac{y}{2} - 2y^{-3} \right) \)

(d) \(l(r) = 2r^{-3/4} - 4r^{-2} \) (e) \(m(z) = (z + 1)(z - 3) + 2z \)

(f) \(n(t) = \frac{t^3 + t^2}{t} \) (g) \(p(v) = v(v - 1) - 2v^2 \)

(h) \(q(w) = 3w^2 + 2w + 1 \)

Exercise 1.5

Which one of the following statements follows from the fundamental theorem of calculus?

(a) All functions \(f(x) \) can be integrated

(b) A definite integral gives the area between the curve and the \(x \) axis

(c) An indefinite integral gives the area between the curve and the \(x \) axis

(d) A definite integral of \(f(x) \) can be found using any antiderivative \(F(x) \)

(e) A definite integral needs an arbitrary constant

Exercise 1.6

Evaluate the following expressions.

(a) \(\int_{-1}^{2} -2x^2 \) (b) \(\int_{1}^{2} \frac{3}{x} \) (c) \(\int_{-1}^{\pi/4} \sin(2x) \)
Exercise 1.7

Consider the graph shown below showing a curve $f(x)$. The area of each shaded region is shown as a fraction.

Using the diagram find the following definite integrals.

(a) $\int_{-4}^{1} f(x) \, dx$ (b) $\int_{-4}^{-3} f(x) \, dx$ (c) $\int_{2}^{3} f(x) \, dx$

(d) $\int_{2}^{-3} f(x) \, dx$ (e) $\int_{2}^{4} f(x) \, dx$ (f) $\int_{1}^{-3} f(x) \, dx$

(g) $\int_{2}^{-3} f(x) \, dx$ (h) $\int_{1}^{2} f(x) \, dx$ (i) $\int_{1}^{-4} f(x) \, dx$

Exercise 1.8

Find the following definite integrals.

(a) $\int_{1}^{2} x^3 \, dx$ (b) $\int_{0}^{\pi/2} \cos(x) \, dx$ (c) $\int_{1}^{e} 2 \, dr$

(d) $\int_{1}^{2} \csc^2(x) \, dx$ (e) $\int_{1}^{1/\sqrt{2}} 1/\sqrt{1-y^2} \, dy$ (f) $\int_{0}^{1} \sec(z) \tan(z) \, dz$

Exercise 1.9

Find the following indefinite integrals by substitution.

(a) $\int 2x \sec^2(x^2) \, dx$ (b) $\int x^{-2}e^{1/x} \, dx$ for $x > 0$

(c) $\int 8x^3(x^4 - 5)^8 \, dx$ (d) $\int \tan(x) \sec^2(x) \, dx$

(e) $\int \frac{4x}{1+4x^2} \, dx$. Use $u = 2x^2$ so that $u^2 = 4x^4$.

(f) $\int \frac{3x^4}{4x^2 + 7} \, dx$

Exercise 1.10

Find the following integrals by substituting for the linear expression.

(a) $\int \sin(2x - 3) \, dx$ (b) $\int e^{4x+1} \, dx$

(c) $\int \frac{1}{x+7} \, dx$ for $x > 1/7$ (d) $\int \sec^2(1 - 3x) \, dx$

Exercise 1.11

Find the following indefinite integrals by integrating by parts.

(a) $\int xe^x \, dx$ (b) $\int 3x \ln x \, dx$ for $x > 0$

(c) $\int 2x \sin \left(\frac{1}{5}x \right) \, dx$ (d) $\int (4 - 3x) \cos(5x) \, dx$
Exercise 1.12
Find the following indefinite integrals by using trigonometric identities.
(a) \(\int (\sin^2(x) - \cos^2(x)) \, dx \)
(b) \(\int (\sin(x)(\cos(x) - \sin(x))) \, dx \)
(c) \(\int (\cos^2(x)(1 + \tan^2(x))) \, dx \)
(d) \(\int (\sin(2x) + 2\sin(x)\cos(x)) \, dx \)

Exercise 1.13
For each of the integrals below suggest a method of integration and perform the integration. This section uses all of the methods covered in these exercises.
(a) \(\int 6x^2e^{x^3} \, dx \)
(b) \(\int x^2 \ln(x) \, dx \) for \(x > 0 \)
(c) \(\int \frac{2x-2}{x^2-2x+1} \, dx \)
(d) \(\int \sin(x)\csc(x) - \cot(x) \, dx \)
(e) \(\int \arctan(x) \, dx \)
(f) \(\int 6x^2(x^3 - 9)^{12} \, dx \)
(g) \(\int \sin^2 \left(\frac{x}{4} \right) - \cos^2 \left(\frac{x}{4} \right) \, dx \)
(h) \(\int \tan(x) \, dx = \int \frac{\sin(x)}{\cos(x)} \, dx \)
(i) \(\int \frac{1}{\sqrt{1-16y^2}} \, dy \)
(j) \(\int \frac{1}{1+3x^2} \, dx \)
(k) \(\int e^{2x} (e^{-x} + e^{-3x}) \, dx \)
(l) \(\int \sec(x) \left(\frac{1}{\cos(x)} + \cos^2(x) \right) \, dx \)
Solutions to Exercises

Solution 1.1
(a) When \(F(x) = 2x^3 - x \) then
\[
f(x) = F'(x) = 6x^2 - 1.
\]
(b) When \(F(x) = 2x^3 - x + \pi \) then
\[
f(x) = F'(x) = 6x^2.
\]
(c) When \(F(x) = 2x^3 - x + e^2 \) then
\[
f(x) = F'(x) = 6x^2 - 1.
\]

Solution 1.2
(a) \(F'(x) = 2x^2 - 1 + 2 \cdot \frac{1}{4} e^{2x} = 2x + e^{2x} = f(x) \)
(b) The indefinite integral is
\[
F(x) + c = x^3 + \frac{1}{4} e^{2x} + c
\]
(c) Choosing \(c \) to be any non-zero real number will give a valid anti-derivative. For example \(c = 1 \) gives
\[
x^2 + \frac{1}{4} e^{2x} + 1
\]

Solution 1.3
(a) \(f(x) = x^{-7} \) \(\Rightarrow \) \(F(x) = \frac{1}{(-7+1)} x^{-7+1} + c \)
\[
= \frac{1}{6} x^{-6} + c
\]
(b) \(g(s) = \sqrt{s} \) \(\Rightarrow \) \(G(s) = \frac{1}{(7/2+1)} s^{7/2+1} + c = \frac{2}{3} s^{3/2} + c \)
(c) \(h(v) = \frac{1}{\sqrt{2}} \) \(\Rightarrow \) \(H(v) = \frac{1}{(7/2+1)} v^{-7/2+1} + c = \frac{2}{3} v^{1/2} + c \)
(d) \(i(\omega) = \frac{1}{\sqrt{2}} \) \(\Rightarrow \) \(I(\omega) = \frac{1}{(7/2+1)} \omega^{-7/2+1} + c = \frac{2}{3} \omega^{1/2} + c \)
(e) \(j(\delta) = \frac{1}{\sqrt{2}} \) \(\Rightarrow \) \(J(\delta) = \frac{1}{(7/2+1)} \delta^{-7/2+1} + c = \frac{2}{3} \delta^{1/2} + c \)
(f) \(k(z) = z^{-3/5} \) \(\Rightarrow \) \(K(z) = \frac{1}{(7/2+1)} z^{-3/5+1} + c = \frac{2}{3} z^{2/5} + c \)

Solution 1.4
(a) \(\int f(x) dx = \int x^3 dx - 3 \int x^2 dx = \frac{1}{4} x^4 - \frac{3}{2} x^2 + c \)
(b) \(g(s) = \int s^{1/2} ds + 2 \int s^{3/2} + \frac{2}{3} s^2 + c \)
(c) \(h(y) = \frac{1}{y^2} y^2 dy - 2 \int y^{-2} dy = \frac{1}{y} + 2 y^{-1} + c \)
(d) \(l(r) = 2 \int r^{-3/4} dr - 4 \int r^{-2} dr = 8 r^{1/4} + 4 r^{-1} + c \)
(e) \(m(z) = (z + 1)(z - 3) + 2 z = z^2 - 2 z - 3 + 2 z = z^2 - 3 \)
\[
\Rightarrow \int m(z) dz = \int z^2 dz - 3 \int dz = \frac{1}{3} z^3 - 3 z + c
\]
(f) \(n(t) = t^2 dt + \int t^2 dt = \int t^2 dt + \int t dt = \frac{t^3}{3} + \frac{t^2}{2} + c \)

(g) \(p(v) = v(v - 1) - 2v^2 = v^3 - v - 2v^2 = -v^3 - v \)
\[
\Rightarrow \int p(v) dv = - \int v^3 dv - \int v dv - \int \frac{v^2}{v} - \int \frac{v^2}{v} = \frac{v^2}{2} - \frac{v^3}{3} + c
\]
(h) \(\int q(w) dw = 3 \int w^2 dw + 2 \int w dw + \int dw = w^3 + w^2 + w + c \)

Solution 1.5
(a) All functions \(f(x) \) can be integrated. False as discontinuous functions may not have an antiderivative.
(b) A definite integral gives the area between the curve and the \(x \) axis. False. Integration gives the signed area.
(c) An indefinite integral gives the area between the curve and the \(x \) axis False. An indefinite integral produces a function and not a number.
(d) A definite integral of \(f(x) \) can be found using any antiderivative \(F(x) \). True.
(e) A definite integral needs an arbitrary constant. False. An indefinite integral requires an arbitrary constant.

Solution 1.6
(a) \([\text{2x}^2]_{-1}^{-1} = (-2(2)^2) - (-2(-1)^2) = -8 - 2 = -6 \)
(b) \(\left[\frac{x}{x} \right]_1^2 = \left(\frac{2}{2} \right) - \left(\frac{1}{1} \right) = 2 \left(\frac{1}{2} \right) - 1 \)
(c) \(\sin(2x) \mid_1^\frac{\pi}{4} = \sin(2(\pi/4)) - \sin(2(-1/2)) = \sin(\pi/2) - \sin(-1) = 1 + \sin(1) \)

Solution 1.7
Some of the solutions here can be worked out from previous parts.
(a) \(\int_1^3 f(x) dx = \int_1^3 f(x) dx + f_1 f(x) dx \)
\[
= \frac{187}{12} + \frac{76}{12} = \frac{263}{12}
\]
(b) \(\int_{-4}^3 f(x) dx = - \int_{-4}^3 f(x) dx = - \left(-\frac{187}{12} \right) = \frac{187}{12} \)
(c) \(\int_{-2}^1 f(x) dx = - \int_{-2}^1 f(x) dx \)
\[
= \left(-\int_{-2}^1 f(x) dx + f_1 f(x) dx + f_1 f(x) dx \right) = -\left(\frac{187}{12} + \frac{76}{12} - \frac{17}{12} \right) = -\frac{20}{3}
\]
(d) \(\int_{-3}^1 f(x) dx = - \int_{-3}^1 f(x) dx = - \left(\frac{187}{12} + \frac{76}{12} - \frac{17}{12} \right) = -\frac{89}{4} \)
(e) \(\int_{-3}^1 f(x) dx = - \int_{-3}^1 f(x) dx = - \left(\frac{89}{4} \right) = \frac{22}{3} \)
(f) \(\int_{-3}^1 f(x) dx = - \int_{-3}^1 f(x) dx = - \left(\frac{22}{3} \right) = \frac{22}{3} \)
(g) \(\int_{-3}^1 f(x) dx = - \int_{-3}^1 f(x) dx = \frac{22}{3} \)
The 'inside' function is always a linear expression in

\[\]

Solution 1.8

(a) \[\int_{-1}^{1} x^3 \, dx = \left[\frac{x^4}{4} \right]_{-1}^{1} = 0 \]

(b) \[\int_{0}^{\pi} \cos(x) \, dx = \sin(x) \Big|_{0}^{\pi} = 1 \]

(c) \[\int_{1}^{2} x^2 \, dx = \left[\frac{2}{3} x^3 \right]_{1}^{2} = \frac{8}{3} - \frac{2}{3} = 2 \]

(d) \[\int_{1}^{2} \csc^2(x) \, dx = \left[-\cot(x) \right]_{1}^{2} = -\cot(2) + \cot(1) \]

(e) \[\int_{1/\sqrt{2}}^{1} \frac{1}{\sqrt{1-y^2}} \, dy = \left[\sin(y) \right]_{1/\sqrt{2}}^{1} = \sin(1) - \frac{1}{\sqrt{2}} \]

(f) \[\int_{0}^{1} \sec(z) \, dz = \left[\sec(z) \right]_{0}^{1} = \sec(1) - \sec(0) \]

Solution 1.9

(a) \[\int 2x \sec^2(x^2) \, dx \]

(b) \[\int x^{-2} e^{1/x} \, dx \]

(c) \[\int 8x^3(x^4 - 5)^8 \, dx \]

(d) \[\int \tan(x) \sec^2(x) \, dx \]

(e) \[\int \frac{1}{1+4x} \, dx \]

(f) \[\int \frac{1}{4x^3 + 1} \, dx \]

Solution 1.10

The 'inside' function is always a linear expression in this section. Therefore the reciprocal of the coefficient of the x term is the constant multiple.

(a) \[\int \sin(2x - 3) \, dx \]

(b) \[\int e^{4x+1} \, dx \]

Solution 1.11

(a) \[\int e^x \, dx \]

(b) \[\int 3x \ln(x) \, dx \]

(c) \[\int \frac{1}{x} \, dx \]

(d) \[\int 4 - 3x \cos(5x) \, dx \]

Solution 1.12

(a) \[\int \sin^2(x) - \cos^2(x) \, dx \]

Rewrite \[\sin^2(x) = \frac{1}{2} (1 - \cos(2x)) \] and \[\cos^2(x) = \frac{1}{2} (1 + \cos(2x)) \]. Then

\[\int \sin^2(x) - \cos^2(x) \, dx = \frac{1}{2} \left(1 - \cos(2x) - (1 + \cos(2x)) \right) \]

(b) \[\int \sin(x) \cos(x) - \sin(x) \, dx \]

The first step is to expand out the brackets so the integrand becomes \[\sin(x) \cos(x) - \sin^2(x) \]. An identity from the previous part is used for \[\sin^2(x) \] and \[\frac{1}{2} \sin(2x) = \sin(x) \cos(x) \].

\[\int \sin(x) \cos(x) - \sin(x) \, dx = \frac{1}{4} \left(\sin(2x) - (1 - \cos(2x)) \right) \]

\[= \frac{1}{4} \cos(2x) - \frac{1}{2} \sin(2x) + c \]

\[= \frac{1}{4} \sin(2x) - \cos(2x) - 2x + c \]
(c) \(\int \cos^2(x)(1 + \tan^2(x)) \, dx \).
Since \(\tan(x) = \frac{\sin(x)}{\cos(x)} \) then \(\tan^2(x) = \frac{\sin^2(x)}{\cos^2(x)} \).
\[
\cos^2(x)(1 + \tan^2(x)) = \cos^2(x) \left(1 + \frac{\sin^2(x)}{\cos^2(x)}\right)
= \cos^2(x) + \sin^2(x) = 1
\]
Therefore the integrand simplifies to 1 and \(\int \cos^2(x)(1 + \tan^2(x)) \, dx = \int 1 \, dx = x + c \)

(d) \(\int \sin(2x) + 2 \sin(x) \cos(x) \, dx \).
The first step is to use \(2 \sin(x) \cos(x) = \sin(2x) \) and then simplify the integrand.
\[
\int \sin(2x) + 2 \sin(x) \cos(x) \, dx = 2 \int \sin(2x)x \, dx = -\cos(2x) + c
\]

Solution 1.13

(a) \(\int 6x^2 e^3 \, dx \)
This integral can be solved by substitution by choosing \(u = x^3 \). It follows that \(\frac{du}{dx} = 3x^2 \) and the integral becomes
\[
2 \int e^u du = 2e^u + c = 2e^{x^3} + c
\]

(b) \(\int x^2 \ln(x) \, dx \) for \(x > 0 \)
This integral can be solved by using integration by parts. Let \(f(x) = \ln(x) \) and \(g(x) = x^2 \). Then \(f'(x) = \frac{1}{x} \) and \(G(x) = \frac{1}{3}x^3 \).
\[
\int x^2 \ln(x) \, dx = \frac{1}{3}x^3 \ln(x) - \frac{1}{3} \int x^2 \, dx
= \frac{1}{3}x^3 \ln(x) - \frac{1}{9}x^3 + c
\]

(c) \(\int \frac{2x^2-2}{x^2+2x+17} \, dx \)
This integral can be solved by substitution by choosing \(u = x^2 + 2x + 17 \). It follows that \(\frac{du}{dx} = 2x + 2 \) and the integral becomes
\[
\int \frac{2x^2-2}{x^2+2x+17} \, dx = \int \frac{2x+2}{u} \, du
= \int \frac{1}{u} \, du = \ln |u| + c = \ln(x^2 + 2x + 17) + c.
\]
Since \(x^2 + 2x + 17 = (x - 1)^2 + 16 > 0 \) for all real values of \(x \) the modulus sign in the logarithm function can be safely removed.

(d) \(\int \sin(x) \cos(x) - \cot(x) \, dx \).
The integrand can be simplified by using trigonometric identities. Write \(\cos(x) = \frac{1}{\sin(x)} \) and \(\cot(x) = \frac{\cos(x)}{\sin(x)} \).
\[
\sin(x)(\cos(x) - \cot(x)) = \sin(x) \left(\frac{1}{\sin(x)} - \frac{\cos(x)}{\sin(x)}\right) = 1 + \cos(x)
\]
so, \(\int (1 + \cos(x)) \, dx = x + \sin(x) + c \)

(e) \(\int \arctan(x) \, dx = \int 1 \times \arctan(x) \, dx \)
This integral can be solved by using integration by parts. Let \(f(x) = \arctan(x) \) and \(g(x) = 1 \).
Then \(f'(x) = \frac{1}{1+x^2} \) and \(G(x) = x \).
\[
\int \arctan(x) \, dx = x \arctan(x) - \int x \frac{1}{1+x^2} \, dx
\]
The integral on the right hand side can now be solved by substitution.
Let \(u = 1 + x^2 \) then \(du = 2x \, dx \).
\[
\int \frac{1}{1+x^2} \, dx = \frac{1}{2} \int \frac{1}{u} \, du = \frac{1}{2} \ln |u| + c = \frac{1}{2} \ln(1 + x^2) + c
\]
Substituting into this into the original integral gives
\[
\int \arctan(x) \, dx = x \arctan(x) - \frac{1}{2} \ln(1 + x^2) + c
\]

(f) \(\int 6x^2(x^3 - 9)^{12} \, dx \)
This integral can be solved by substitution by choosing \(u = x^3 - 9 \). It follows that \(\frac{du}{dx} = 3x^2 \) and the integral becomes
\[
\int 6x^2(x^3 - 9)^{12} \, dx = 2 \int u^{12} \, du = 2 \int u^{12} \, du = \frac{u^{13}}{13} + c = \frac{(x^3-9)^{13}}{13} + c
\]

(g) \(\int \sin^2 \left(\frac{x}{2}\right) - \cos^2 \left(\frac{x}{2}\right) \, dx \)
This integral can be rewritten using \(\sin^2(\theta) = \frac{1}{2}(1 - \cos(2\theta)) \) and \(\cos^2(\theta) = \frac{1}{2}(1 + \cos(2\theta)). \)
Therefore \(\sin^2(x/4) = \frac{1}{2}(1 - \cos(x/2)) \) and \(\cos^2(x/4) = \frac{1}{2}(1 + \cos(x/2)). \)
\[
\int \sin^2 \left(\frac{x}{2}\right) - \cos^2 \left(\frac{x}{2}\right) \, dx
= \frac{1}{2} \int 1 - \cos(x/2) - 1 - \cos(x) \, dx
= -\frac{1}{2}(2 \sin(x/2) + \sin(x)) + c
\]

(h) \(\int \tan(x) \, dx = \int \frac{\sin(x)}{\cos(x)} \, dx \)
This integral can be solved by substitution by choosing \(u = \cos(x) \). It follows that \(\frac{du}{dx} = -\sin(x) \) and the integral becomes
\[
\int \tan(x) \, dx = -\int \frac{1}{u} \, du = -\ln |u| + c
= -\ln |\cos(x)| + c
\]

(i) \(\int \frac{1}{\sqrt{1-16y^2}} \, dy \)
This integral can be solved by substitution. Let \(u = 4y \) then \(\frac{du}{dy} = 4 \).
\[
\int \frac{1}{\sqrt{1-16y^2}} \, dy = \frac{1}{4} \int \frac{1}{\sqrt{1-u^2}} \, du = \frac{1}{4} \int \frac{1}{\sqrt{1-u^2}} \, du
= \frac{1}{4} \arcsin(u) + c = \frac{1}{4} \arcsin(4y) + c
\]

(j) \(\int \frac{1}{x+2} \, dx \)
This integral can be solved by substitution. Let \(u = \sqrt{x+2} \) then \(\frac{du}{dx} = \frac{1}{\sqrt{x+2}} \).
\[
\int \frac{1}{x+2} \, dx = \frac{1}{\sqrt{x+2}} \int \frac{1}{u} \, du = \frac{1}{\sqrt{x+2}} \int \frac{1}{u} \, du
= \frac{1}{\sqrt{5}} \arctan(u) + c = \frac{1}{\sqrt{5}} \arctan(\sqrt{x+2}) + c
\]

(k) \(\int e^{2x} (e^{-x} + e^{-3x}) \, dx \)
The integrand should be expanded to obtain \(e^x + e^{-x} \).
\[
\int e^{2x} (e^{-x} + e^{-3x}) \, dx = \int e^x \, dx + \int e^{-x} \, dx
= e^x - e^{-x} + c
\]

(l) \(\int \sec(x) \left(\frac{1}{\cos(x)} + \cos^2(x)\right) \, dx \)
The integrand needs to be rearranged using \(\sec(x) = \frac{1}{\cos(x)} \).
\[
\sec(x) \left(\frac{1}{\cos(x)} + \cos^2(x)\right)
= \frac{1}{\cos(x)} \left(\frac{1}{\cos(x)} + \cos^2(x)\right)
= \frac{1}{\cos^2(x)} + \cos(x) = \sec^2(x) + \cos(x)
\]
Therefore the integral can be rewritten as \(\int \sec^2(x) + \cos(x) \, dx = \tan(x) + \sin(x) + c. \)